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Abstract
The control of organ size is a basic biological question. In the last several years, the Hippo
signaling pathway has been delineated and shown to be critical in control of organ size in both
Drosophila and mammals. Acting downstream of the Hippo pathway is the Yki/YAP/TAZ
transcription co-activators. In mammalian cells, the Hippo pathway kinase cascade inhibits YAP
and its paralog TAZ by phosphorylation and promotion of their cytoplasmic localization. The
TEAD family transcription factors have recently been identified as evolutionarily conserved key
mediators of YAP biological functions. yap is a candidate oncogene, and several other
components of the Hippo pathway are tumor suppressors. Dysregulation of the Hippo pathway
contributes to the loss of contact inhibition observed in cancer cells. Therefore, the Hippo-YAP
pathway connects the regulation of organ size and tumorigenesis.

Introduction
People have long been interested in the precise regulation of body and organ size of
multicellular organisms. However, silencing of basic developmental regulatory genes often
leads to early lethality, which makes further characterization very difficult. This obstacle
was overcome first in Drosophila by the development of technology generating genetic
mosaics in developing tissue. The mosaic screen fueled discovery of many Drosophila
tumor-suppressor genes including the Hippo pathway components, which form a kinase
cascade in regulation of a transcription co-activator Yorkie (Yki) [1-6]. Yes-associated
protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, also called
WWTR1), two Yki homologs in mammals, are phosphorylated and inhibited by the Hippo
pathway through cytoplasmic retention [7-9]. The function of YAP in regulation of organ
size is conserved from Drosophila Yki [10,11]. Furthermore, yap is a candidate oncogene
amplified in human cancers [12,13]. In this review we discuss the regulation and
downstream transcription factors of YAP and TAZ in mammalian cells emphasizing the
connections between the Hippo pathway and cancer.
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The Hippo pathway in Drosophila
In 1995, The first Hippo pathway component, wts, was uncovered by genetic mosaic screens
in Drosophila. wts encodes a nuclear Dbf-2-related (NDR) family protein kinase [14,15].
Mutation of wts leads to robust tissue overgrowth. Since 2002, similar screens have
identified several other Hippo pathway components, including Salvador (Sav) [16,17],
Hippo (Hpo) [18-22], and Mats[23]. Together they form the core of the Drosophila Hippo
pathway in which Hpo kinase, in association with an adaptor protein Sav, phosphorylates
and activates Wts kinase, which is associated with an activating subunit Mats (Fig.1).
Upstream of that might be Merlin (Mer) and Expanded (Ex), two ERM (ezrin/radixin/
moesin) family cytoskeleton-related proteins [24]. Fat, a protocadherin might be further
upstream [25-29]. However, the biochemical mechanisms of Mer, Ex and Fat in regulation
of the Hippo pathway core components are not clear.

The Hippo pathway limits organ size by inhibiting cell proliferation and promoting
apoptosis [2]. Such regulation is achieved at least in part by transcriptional activation of
target genes like cycE, diap1 [2] and bantam microRNA [30,31]. Logically, the Hippo
pathway should target some transcription regulators. Indeed, Yki, ortholog of the
mammalian YAP, a transcription co-activator, was identified as a Wts-interacting protein
[32]. Yki regulates transcription of the Hippo pathway target genes, and its overexpression
phenocopies the loss of Hippo pathway components. Further biochemical studies showed
that Wts directly phosphorylates Yki, which leads to Yki cytoplasmic retention and
inactivation [11,32].

The incorporation of Yki significantly advanced our understanding of the Hippo pathway.
However, since Yki is a transcription co-activator, its promoter selectivity must be
determined by its interacting transcription factors. It was recently reported that Scalloped
(Sd), a critical regulator of proliferation and survival of wing imaginal disc cells [33,34],
directly mediates Yki-induced gene expression and overgrowth phenotype [35-38].
However, Sd is expressed in a narrower spectrum of cells while Yki and the Hippo pathway
functions more ubiquitously [39]; yki mutant clones have more severe growth defects than
sd mutant clones [32,36]; and Sd-binding-defective Yki mutant elicits a reduced but still
obvious overgrowth in Drosophila eyes and wings [37]. Therefore, other transcription
factors mediating the function of Yki and the Hippo pathway likely exist.

The Hippo pathway in mammalian cells
Components of the Hippo pathway are highly conserved in mammals, including Mst1/2
(Hpo homolog), WW45 (also called Sav, Sav homolog), Lats1/2 (Wts homolog), Mob1
(Mats homolog), YAP and its paralog TAZ (both are Yki homologs), Mer (also called NF2,
Mer homolog), and at a lesser degree FRMD6 (Ex homolog), and Fat4 (Fat homolog) (Fig.
1). More strikingly, human YAP, Lats1, Mst2, and Mob1 can functionally rescue the
corresponding Drosophila mutants in vivo, suggesting the functional conservation of these
proteins in mammals [2]. As Hpo in Drosophila, Mst plays a key role in the mammalian
Hippo pathway as it phosphorylates all three other core components. Lats1/2 is
phosphorylated by Mst1/2 on the activation loop and hydrophobic motif, possibly with
autophosphorylation involved [40]. WW45 interacts with Mst through the SARAH domains
in each other, and is then phosphorylated by Mst [41]. Mob1 is also phosphorylated by
Mst1/2, which enhances its interaction with Lats1 [42].

However, the mammalian Hippo pathway was not established until it was shown to inhibit
YAP and TAZ. Mst, WW45, Lats, and Mob induce YAP phosphorylation, cytoplasmic
translocation, and inhibition [8,9,43,44]. The mechanism of YAP regulation by the Hippo
pathway is conserved in TAZ [7]. It was further shown that TEAD family transcription
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factors, homologs of the Drosophila Sd, are key mediators of YAP function in mammalian
cells [37]. The function of the Hippo pathway in organ size control is also conserved in
mammals because overexpression of YAP in mouse liver induces dramatic increase in liver
size and eventually leads to tumor formation [10,11]. The regulation and function of YAP
and TAZ will be discussed in detail below.

The functional conservation of the Hippo pathway upstream components Fat and Ex in
mammalian cells is not clear. However, Mer has been shown to regulate YAP localization
and inhibit its activity in cell culture [8]. In addition, RASSF, a subgroup of Ras effector
proteins with inhibitory effect on the Hippo pathway in Drosophila [45], might be an
activator of the Hippo pathway in mammals [46]. RASSF1A has been reported to activate
Mst2, which may result in activation of YAP on p73 in the context of Fas-induced apoptosis
[47]. However, the activation of YAP is difficult to interpret as the Hippo pathway
activation was clearly shown to inhibit YAP activity. It will be important to clarify the role
of RASSF in the Hippo pathway and YAP regulation.

YAP is a transcription co-activator
YAP was first cloned as a protein bound to non-receptor tyrosine kinase c-Yes [48]. It has
several distinct domains as the human YAP2 shown in Fig.2. YAP also exists as YAP1,
another splicing variant missing the second WW domain. Regulation of the switch between
the two YAP isoforms is not clear. In general, YAP mRNA is ubiquitously expressed in a
wide range of tissues, except peripheral blood leukocytes [49]. YAP is also expressed in the
full developmental stages from blastocyst to perinatal [50].

However, the function of YAP remained enigmatic until it was shown to be a transcription
co-activator [51]. YAP interacts with the PPXY motif of transcription factor PEBP2α
(RUNX1 and RUNX2) mainly through its first WW domain. More importantly, when fused
to Gal4 DNA binding domain, YAP could activate luciferase reporter as strong as VP16, a
potent transcription activator. The transcription activation domain of YAP was further
mapped to the C-terminal region. Interestingly, this region was found to be truncated in
possibly dominant-negative YAP isoforms specifically expressed in neurons [52]. However,
YAP does not have any obvious DNA binding domain. Therefore, it is categorized as a
transcription co-activator. YAP has also been reported to co-activate other PPXY-motif-
containing transcription factors, including ErbB4 cytoplasmic domain [49] and p73 [53].

YAP also binds to TEAD family transcription factors [54], which have four highly
homologous proteins sharing a conserved DNA-binding TEA domain in human and mouse.
Most adult tissues express at least one TEAD gene. YAP was first identified as a TEAD-
interacting protein by affinity purification [54]. Strikingly, about 75% of the purified
TEAD2 are in complex with YAP. From a different direction, we screened for YAP targets
in a Gal4-fusion transcription factor library, which covers about one third of potential
transcription factors encoded by the human genome. This unbiased strategy identified
TEAD2, TEAD3, and TEAD4 as the strongest positives [37]. TEAD1, which is not in the
library, is activated by YAP in similar magnitude. Therefore, biochemical purification starts
with TEAD and functional screen starts with YAP complement each other nicely in
establishing a partnership between YAP and TEAD at least in cell culture.

More importantly, TEAD was shown to play a critical role in YAP function. In MCF10A
human mammary epithelial cells, YAP and TEAD1 promoter occupancy is highly
overlapped [37]. Knock-down of TEAD or introduction of a TEAD-binding-deficient
mutation (serine 94 to alanine) in YAP aborts activation of a large fraction of YAP-
inducible genes [37]. TEAD is further shown to be critical for YAP-induced overgrowth,
epithelial-mesenchymal-transition (EMT), and oncogenic transformation in MCF10A cells
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[37]. Furthermore, the phenotype of TEAD1/TEAD2 double knockout mice resembles YAP
knockout mice and evidence suggests that tead1/tead2 and yap genetically interact with each
other in vivo [55]. In addition, TEAD1/TEAD2 double knockout embryos show decreased
proliferation and increased apoptosis [55], a phenotype consistent with the Hippo pathway
components mutants in Drosophila. Finally, the function of YAP and TEAD interaction in
cell growth is implicated in human disease. Sveinsson’s chorioretinal atrophy is a human
genetic disease caused by a heterozygous mutation of a highly conserved tyrosine in the
YAP binding domain of TEAD1 [56]. Interestingly, mutation of this residue in TEADs
abolished their interaction with and their activation by YAP [37,57], which may explain the
atrophic phenotype. These observations support that TEAD is at the downstream of the
Hippo pathway mediating YAP activity.

Regulation of YAP phosphorylation and localization
The Hippo pathway phosphorylates Yki to control organ size in Drosophila. Regulation on
such a basic biological process would be expected to be conserved in higher organisms.
Indeed, YAP is directly phosphorylated by Lats on serine residues in five conserved
HXRXXS motifs [8,9], including S127 [11,44]. Phosphorylation by Lats on this residue
generates a 14-3-3 binding site and induces YAP cytoplasmic translocation, and therefore,
inactivation [8,9]. Such mechanism explains the Hippo pathway-dependent nuclear/
cytoplasmic translocation of YAP based on cell density. Consistently, keratinocytes lacking
Hippo pathway component WW45 lost the cytoplasmic translocation of YAP upon Ca2+

induced differentiation [58]. Removing the inhibitory phosphorylation sites disrupts the
regulation on YAP localization and promotes YAP induced over-proliferation of NIH-3T3
cells (unpublished observation), oncogenic transformation of MCF10A cells [9], and
overgrowth of Drosophila tissue in vivo [8]. In agreement with that, the transformation
activity of YAP is inhibited by co-expression of Lats1 and Mst2 [9,43]. These studies
support the evolutionarily conserved function of YAP in promotion of cell proliferation and
oncogenic transformation under negative regulation by the Hippo pathway.

YAP S127 has also been suggested to be an Akt phosphorylation site [59]. However, the
sequences around this site do not match the optimal Akt target site. YAP S127
phosphorylation is neither suppressed by PI3K inhibitors nor induced by EGF/ insulin
stimulation or active Akt expression [8]. More importantly, YAP phosphorylation is not
affected by knockout of PDK1, which is essential for Akt activity [8]. Consistent with that,
the Drosophila Yki is not phosphorylated by Akt either [11]. All these results strongly
indicate that YAP is not directly phosphorylated by Akt at least under most physiological
conditions. However, it cannot be excluded that YAP is phosphorylated by Akt under some
circumstances.

Besides the Hippo pathway mediated serine/threonine phosphorylation, YAP was recently
shown to be regulated by tyrosine phosphorylation. A recent report from Dr. Shaul’s lab
showed that c-Abl directly binds and phosphorylates YAP on Y357, which stabilizes YAP
and confers selective binding of YAP to p73 and is required for cisplatin-induced apoptosis
[60]. In contrast with previously suggested mechanism of YAP-p73 activation involving Akt
or RASSF, the Y357 phosphorylation and stabilization of YAP was shown to be indeed
induced by DNA damage. However, the biochemical mechanism of Y357 phosphorylation
in YAP activity regulation is not yet clear, and it will be interesting to determine if there is
any cross-talk between the Hippo pathway and c-Abl regulated YAP phosphorylation.

The Hippo pathway promotes YAP cytoplasmic retention. However, YAP does not have any
obvious nuclear localization signal sequence. Therefore, it is not clear how YAP gets into
the nucleus when the Hippo pathway is silenced. One possible mechanism is through

Zhao et al. Page 4

Curr Opin Cell Biol. Author manuscript; available in PMC 2012 March 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interaction and co-transportation with target transcription factors, such as shown for
Drosophila Yki, which is translocated from cytoplasm to nucleus by co-expression of Sd in
S2 cells [35,38]. Such effect is overridden by the Hippo pathway as Hpo expression
sequesters both Yki and Sd in the cytoplasm [35]. More importantly, Sd expression
significantly potentiates the effect of wts mutation in inducing Yki nuclear localization in
vivo [35]. Considering the functional conservation of Yki/Sd in the mammalian YAP/TEAD,
such regulation likely exists for YAP, although it awaits confirmation. However, it has
already been reported that upon cisplatin treatment, YAP translocates to the nucleus in a
p73-dependent manner [61]. It will be important to examine the contribution of different
transcription factors in regulation of YAP nuclear localization and determine the underlying
mechanism.

YAP as an oncoprotein
YAP is a potent growth promoter. Overexpression of YAP increases organ size in
Drosophila and saturation cell density in NIH-3T3 cell culture [8]. However, yap was
termed a candidate oncogene only after it was shown to be in human chromosome 11q22
amplicon, which is evident in several human cancers [12,13]. Consistently, yap was shown
to be amplified in human primary intracranial ependymomas by clinical study [62]. Besides
the genomic amplification, YAP expression and nuclear localization was also shown to be
elevated in multiple types of human cancers [8,11,13,63]. Several experiments further
confirmed that YAP has oncogenic function: YAP overexpression in MCF10A cells induces
epithelial-mesenchymal transition (EMT), which is often associated with cancer metastasis
[12]; YAP cooperates with myc oncogene to stimulate tumor growth in nude mice [13]; and
more interestingly, transgenic mice with liver-specific YAP overexpression show a dramatic
increase in liver size and eventually develop tumors [10,11]. The above evidence strongly
indicates the function of yap as an oncogene. However, YAP was also reported to be a
tumor suppressor as its gene locus is deleted in some breast cancers with a correlated loss of
YAP expression [64]. Further experiments such as conditional knockout animal model will
finally clarify the role of YAP in tumorigenesis.

The oncogenic function of YAP is further supported by the tumor suppressor function of its
inhibitory upstream Hippo pathway components. Lats1 knockout leads to soft-tissue
sarcoma and ovarian tumor development [65]. mob, an activating subunit of Lats, is mutated
in both human and mouse cancer cells [23]. Loss-of-function mutation of WW45 has been
observed in several human cancer cell lines [17]. Furthermore, a recent report showed that
knockout of ww45 leads to hyperplasia and differentiation defects in mouse embryonic
epithelial structures [58]. Mer, which is further upstream of the Hippo pathway, is a well-
established human tumor suppressor [66]. Therefore, the Hippo pathway consists of many
proven or candidate tumor suppressors that inhibit YAP oncoprotein.

Noteworthy, several studies showed a proapoptotic function of YAP, which was mainly
explained by co-activation of p73 [44,47,60,61]. So far, the proapoptotic activity of YAP
was only observed by overexpression of YAP or in response to strong apoptotic stimuli,
such as Fas activation or DNA damage. However, the effect of YAP overexpression in vivo
was shown to be an increase of organ size and finally tumor formation without accompanied
increase of apoptosis. In fact, YAP overexpression protects liver tissue from Fas induced
apoptosis [10,11]. On the other hand, the Drosophila genetic studies have clearly established
that Yki inhibits aopotosis in vivo. It is still possible that under certain conditions like DNA
damage, YAP was tyrosine phosphorylated by c-Abl, which selectively activates YAP
transcriptional activity on p73 to induce apoptosis.
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Contact inhibition of cell growth, often referred to as a hallmark of cancer cells, has long
been a mystery. However, the Hippo pathway may have opened the window a little bit to
understand this phenomenon. Several components of this pathway have been implicated in
contact inhibition. Mer becomes dephosphorylated and activated in confluent cells [67,68],
which has been reported to be both necessary and sufficient for contact inhibition. Lats2 and
WW45 are also related to contact inhibition as their knockout MEF cells show loss of
contact inhibition [58,69]. Finally, YAP is phosphorylated and translocated to the cytoplasm
by the Hippo pathway at high cell density in a Mer-dependent manner [8]. More
importantly, a dominant-negative form of YAP restores contact inhibition in ACHN [8], a
cancer cell line with activation of YAP due to WW45 mutation. These observations suggest
a critical role of YAP and the Hippo pathway in contact inhibition. Indentifying the
upstream signal of this pathway might solve a long-standing mystery in cell biology.

Similarity and differences between TAZ and YAP
TAZ is a YAP paralog initially identified as a 14-3-3 binding protein [70]. In human and
mouse, TAZ mRNA is expressed in all tissues except thymus and peripheral blood
leukocytes, with the highest expression in kidney [70]. TAZ has approximately 50%
sequence identity and very similar topology with YAP, although the differences are also
apparent, including the lack of N-terminal proline-rich domain, the second WW domain, and
the SH3 binding motif (Fig.2). This suggests both shared and distinct regulation/ function
between TAZ and YAP.

TAZ is regulated by the Hippo pathway in a fashion similar to YAP. TAZ can be
phosphorylated by Lats2 on serine residues in four HXRXXS motifs [7], including S89, the
counterpart of YAP S127. Phosphorylation on TAZ S89 by Lats, creates a 14-3-3 binding
site. Therefore, TAZ is sequestered in the cytoplasm and inactivated [7]. This model
suggests that besides YAP inhibition, TAZ inactivation is also an important downstream
output of the Hippo pathway.

Similar to YAP, TAZ also functions as a transcriptional co-activator [70]. TAZ interacts
with TEAD [71], and based on the screen of a human transcription factor library and tandem
affinity purification of TAZ-interaction proteins, we actually observed TEADs as the major
transcription factor targets of TAZ (unpublished data). TAZ has also been reported to
interact with several other transcription factors such as RUNX2 [70]. At this point, it is
apparent that YAP and TAZ share many transcription factor targets such as TEAD and
RUNX. However, their contribution to the functions of those shared transcription factors is
not clear. Nor is the activation of unique targets in defining the distinct physiological
functions of YAP and TAZ.

YAP increases organ size and functions as an oncogene [8,11,12]. Similarly, TAZ also
promotes cell proliferation, induces EMT, increases cell migration and invasion [7,72], and
is shown to be overexpressed in approximately 20% of breast cancer samples [72].
Experiments are needed to show if the TAZ gene locus is also amplified in cancer and if
TAZ overexpression also leads to increase in organ size and tumor development.

In spite of these similarities, existing evidence suggests that YAP and TAZ do not
compensate each other. First, YAP and TAZ knockout mice show different phenotypes:
YAP knockout animals are embryonic lethal and show shortened body axis and defects in
yolk sac vasculogenesis [50]. In contrast, TAZ knockout mice are viable and are
characterized by renal cysts which lead to end stage kidney disease [73,74]. Second, in many
reports, the phenotype of YAP or TAZ knockdown were not masked by the presence of the
other [37,72,75,76]. Such differences can be explained by differential spatial/temporal
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regulation of YAP and TAZ activity or different downstream targets, which require further
study.

Function of TAZ in stem cells
The balance between cell proliferation and differentiation is implicated not only in normal
tissue development but also in tumorigenesis. Mesenchymal stem cells (MSCs) are
pluripotent precursor cells with ability to differentiate into several distinct lineages. A recent
study showed that TAZ functions as a transcriptional modulator of MSC differentiation by
promoting osteoblast differentiation while repressing adipocyte differentiation [75]. More
interestingly, TAZ has recently been shown to maintain human embryonic stem cell (hESC)
pluripotency [76]. TAZ binds heteromeric Smad2/3-4 upon TGFβ stimulation, and plays an
essential role in Smad nuclear accumulation. In hESCs, TAZ is required to maintain self-
renewal markers and loss of TAZ leads to inhibition of TGFβ signaling and differentiation
of hESCs into a neuroectoderm lineage. Coincidently, YAP has also been implicated in stem
cell maintenance. In mouse intestine, expression of endogenous YAP is restricted to the
progenitor/stem cell compartment, and YAP overexpression expands multipotent
undifferentiated progenitor cells, which differentiate upon cessation of YAP expression [10].
Consistent with the role of YAP and TAZ in maintaining stemness, mice lacking WW45
showed immature differentiation and hyperplasia likely due to defective cell-cycle exit in
epithelial progenitor cells [58]. Therefore, the Hippo pathway in control of YAP and TAZ
may regulate stem cell renewal and differentiation, although the underlying mechanism is
not yet clear.

Key questions to be addressed
Genetic, cell biology, and biochemical studies have established the novel Hippo tumor
suppressor pathway. Inhibition of YAP and TAZ transcription co-activators is the major
target of the Hippo pathway to regulate cell proliferation, apoptosis, and organ size in
mammals [77]. In spite of rapid progresses in the field, many key questions remain to be
answered. Perhaps the most interesting question in the Hippo pathway is the upstream
signals that activate the core components. The sensing of organ size in vivo and cell
confluence in vitro are long-standing mysteries. It is reasonable to speculate that such a
signal may act upstream of the Hippo pathway.

Equally important is what are the other transcription factors mediating the biological
function of YAP and TAZ. The PPXY-motif-containing transcription factors may interact
with YAP WW domains, and are therefore possible candidates. A related question is how
YAP and TAZ activate transcription. Although largely unknown, current evidence suggests
mechanisms such as recruitment of histone modification factors or Mediator complex.
Answering these questions is important in understanding the mechanism of YAP and TAZ
in control of cell growth and organ size.

In Drosophila, Yki activates expression of many genes, including cycE, diap1 and bantam
microRNA. However, in mammalian cells, cycE is not induced by YAP, and the bantam
microRNA is not conserved, while induction of birc5, an IAP family member, is insufficient
to explain the increased proliferation and organ size. CTGF is recently shown to be a direct
YAP target gene important for YAP function in mammalian cells [37]. However, there is no
evidence that CTGF homolog is an Yki target gene in Drosophila. It would be very
interesting if common genes in Drosophila and mammals mediate the Hippo pathway
functions, especially, if there is a functional equivalent of the bantam microRNA in
mammals.
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In the next few years, one can expect exciting discoveries in the Hippo pathway. Advances
in this field may not only solve the puzzle of size control and contact inhibition, but also
provide new targets for treatment of human diseases such as atrophy and cancer.
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Figure 1. The Hippo pathway in Drosophila and mammals
Corresponding components in Drosophila and mammals are shown in the same color. The
abbreviations used are as follows: Ex (Expanded), Mer (Merlin, also called NF2), Hpo
(Hippo), Sav (Salvador), Mats (Mob as tumor suppressor), Wts (Warts), Yki (Yorkie), Sd
(Scalloped), Mst (Mst1/2, also called STK4 and STK3, Hpo homolog), WW45 (Sav
homolog), Mob (Mps One Binder kinase activator-like 1A/B, MOBKL1A/B, Mats
homolog), Lats (Lats1/2, Wts homolog), YAP (Yes-associated protein, Yki homolog), TAZ
(transcriptional co-activator with PDZ-binding motif, also called WWTR1, Yki homolog),
and TEAD (TEA domain family member 1/2/3/4). Dashed arrows indicate unknown
biochemical mechanism and question marks denote unknown components.
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Figure 2. A schematic view of YAP, TAZ, and Yki
YAP is a 65KDa protein with several distinct domains or motifs. It has a proline-rich (P-
rich) region at the N-terminal, two tandem WW domains in the middle followed by a Src
homology domain 3 binding motif (SH3 BM) PVKQPPPLAP, a coiled-coil domain (CC),
and a C-terminal capped by TWL sequence, a PDZ domain ligand. The N-terminal (aa
47-154 in human YAP2, shaded in blue) of YAP was mapped to be the TEAD family
transcription factors interaction domain [54], and the C-terminal of YAP (aa 292-488,
shaded in pink) rich in serine, threonine, and acidic residues was shown to be a strong
transcription activator [51]. The Lats phosphorylation and 14-3-3 binding critical S127 in
human YAP2 and its equivalent in Yki and TAZ are also shown. The topology of Yki and
TAZ are shown in similar fashion and the proteins are drawn in scale.
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